Part Number Hot Search : 
2SC506 02001 BD7851FP RAV621LD 5KP70A XE0052S2 D471K 2SC37
Product Description
Full Text Search
 

To Download R5322NSERIES Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  no. ea-077-0012 sot23-6w 120ma 2ch ldo regulators r5322n series application manual
sot23-6w 120ma 2ch ldo regulators r5322n series 1 outline the r5322n series are voltage regulator ics with high output voltage accuracy, low supply current, low dropout, and high ripple rejection by cmos process. each of these voltage regulator ics consists of a voltage reference unit, an error amplifier, resistors for setting output voltage, a current limit circuit, and a chip enable circuit. these ics perform with low dropout voltage due to built-in transistor with low on resistance, and a chip enable function and prolong the battery life of each system. the line transient response and load transient response of the r5322n series are excellent, thus these ics are very suitable for the power supply for hand-held communication equipment. the output voltage of these ics is internally fixed with high accuracy. since the package for these ics is sot-23- 6w package, and include 2ch ldo regulators each, high density mounting of the ics on boards is possible. features ? ultra-low supply current ................................................. typ. 75a (vr1,vr2) ? standby mode ..................................................................... typ. 0.1a (vr1,vr2) ? low dropout voltage ......................................................... typ. 0.15v (i out =100ma output voltage=3.0v type) ? high ripple rejection ........................................................ typ. 75db (f=1khz) ? low temperature-drift coefficient of output voltage..... typ. 100ppm/ c ? excellent line regulation.................................................. typ. 0.05%/v ? high output voltage accuracy .......................................... 2.0% ? small package .................................................................... sot-23-6w ? output voltage.................................................................... stepwise setting with a step of 0.1v in the r ange of 1.5v to 4.0v is possible ? built-in chip enable circuit (a/b: active high) ? built-in fold-back protection circuit................................... typ. 40ma (current at short mode) applications ? power source for cellular phones such as gsm, cdma and various kinds of pcs. ? power source for electrical appliances such as cameras, vcrs and camcorders. ? power source for battery-powered equipment.
r5322n 2 block diagram ? r5322n a ce1 1 v out1 r1-1 r2-1 6 gnd v out2 5 v dd 2 ce2 3 current limit error amp. vref - + r1-2 r2-2 current limit error amp. vref - + 4 ? r5322n b ce1 1 v out1 r1-1 r2-1 6 gnd v out2 5 v dd 2 ce2 3 current limit error amp. vref - + r1-2 r2-2 current limit error amp. vref - + 4
r5322n 3 selection guide the output voltage, mask option, and the taping type for the ics can be selected at the user?s request. the selec- tion can be made with designating the part number as shown below; r5322n - part number ab c code contents a setting combination of 2ch output voltage (v out ) : serial number for voltage setting, stepwise setting with a step of 0.1v in the range of 1.5v to 4.0v is possible for each channel. b designation of mask option : a version: without auto discharge function at off state. b version: with auto discharge function at off state. c designation of taping type : ex. tr (refer to taping specifications; tr type is the standard direction.) pin configuration sot-23-6w (mark side) v out1 gnd v out2 ce1 v dd ce2 5 64 123 pin description pin no. symbol description 1 ce1 chip enable pin 1 2v dd input pin 3 ce2 chip enable pin 2 4v out2 output pin 2 5 gnd ground pin 6v out1 output pin 1
r5322n 4 absolute maximum ratings symbol item rating unit v in input voltage 6.5 v v ce input voltage (ce pin) -0.3 ~ v in +0.3 v v out output voltage -0.3 ~ v in +0.3 v i out1 output current 1 130 ma i out2 output current 2 130 ma p d power dissipation 250 mw topt operating temperature range -40 ~ 85 c tstg storage temperature range -55 ~ 125 c
r5322n 5 electrical characteristics ? r5322n a/b to p t = 2 5 c symbol item conditions min. typ. max. unit v out output voltage v in = set v out +1v 1ma i out 30ma v out 0.98 v out 1.02 v i out output current v in ? v out = 1.0v 120 ma ? v out / ? i out load regulation v in = set v out +1v 1ma i out 120ma 12 40 mv v dif dropout voltage refer to the electrical characteristics by output volt- age i ss supply current v in = set v out +1v 75 150 a istandby supply current (standby) v in = v ce = set v out +1v 0.1 1.0 a ? v out / ? v in line regulation set v out +0.5v v in 6v i out = 30ma (in case that v out 1.6v, 2.2v v in 6v) 0.05 0.20 %/v rr ripple rejection f = 1khz, ripple 0.5vp-p v in = set v out +1v, i out = 30ma 75 db v in input voltage 2.2 6.0 v ? v out / ? t output voltage temperature coefficient i out = 30ma -40 c to p t 85 c 100 ppm / c ilim short current limit v out = 0v 40 ma r pd ce pull-down resistance 1.5 4 16 m ? v ceh ce input voltage ?h? 1.5 v in v v cel ce input voltage ?l? 0.0 0.3 v en output noise bw=10hz to 100khz 30 vrms r low low output nch tr. on resistance (of b version) v ce =0v 70 ?
r5322n 6 ? electrical characteristics by output voltage to p t = 2 5 c dropout voltage v dif (v) output voltage v out (v) condition typ. max. 1.5 v out 1.6 0.36 0.70 1.7 v out 1.8 0.30 0.50 1.9 v out 2.0 0.28 0.45 2.1 v out 2.7 0.24 0.40 2.8 v out 4.0 i out = 120ma 0.18 0.30 test circuits 43 2 1 v v out2 v out2 ce2 ce1 v dd v out1 gnd r5322n series v out1 c3 i out2 v c2 c1 ? c1=tantal 1.0 f c2=c3=tantal 2.2 f i out1 5 6 43 2 1 a v out2 ce2 ce1 v dd v out1 i ss gnd r5322n series c3 c2 c1 5 6 ? c1=1.0 f c2=c3=2.2 f fig.1 standard test circuit fig.2 supply current test circuit 43 2 1 pg v out2 ce2 pulse generator ce1 v dd v out1 gnd r5322n series c3 i out2 c2 i out1 5 6 ? c2=c3=2.2 f 43 2 1 v out2 ce2 ce1 v dd v out1 gnd r5322n series c3 c2 c2 i out1a i out1b i out2a i out2b 5 6 ? c1=1.0 f c2=c3=2.2 f fig.3 ripple rejection, line transient response test circuit fig.4 load transient response test circuit
r5322n 7 typical application 43 2 1 v out2 ce2 ce1 v dd v out1 gnd r5322n series c3 c2 c1 in out2 out1 5 6 (external components) output capacitor; tantalum type
r5322n 8 typical characteristics 1) output voltage vs. output current 1.5v (vr1) 1.5v (vr2) output current i out (a) output voltage v out (v) 0.00 0.10 v in =1.8v v in =2.0v v in =3.5v v in =2.5v 0.0 0.2 0.4 1.6 1.4 1.0 1.2 0.6 0.8 0.30 0.20 output voltage v out (v) 0.00 0.10 0.15 0.05 v in =1.8v v in =2.0v v in =3.5v 0.0 0.2 0.4 1.6 1.4 1.0 1.2 0.6 0.8 0.30 0.20 0.25 v in =2.5v output current i out (a) 2.8v (vr1) 2.8v (vr2) output voltage v out (v) 0.00 0.10 0.15 0.05 v in =3.1v v in =3.3v v in =4.8v 0.0 0.5 3.0 2.5 2.0 1.0 1.5 0.30 0.20 0.25 v in =3.5v output current i out (a) output voltage v out (v) 0.00 0.10 0.15 0.05 v in =3.1v v in =3.3v v in =4.8v 0.0 0.5 3.0 2.5 2.0 1.0 1.5 0.30 0.20 0.25 v in =3.5v output current i out (a) 4.0v (vr1) 4.0v (vr2) output voltage v out (v) 0.00 0.10 0.15 0.05 v in =4.3v v in =4.5v v in =6.0v 0.0 0.5 4.5 4.0 3.5 3.0 2.5 2.0 1.0 1.5 0.30 0.20 v in =5.0v output current i out (a) output voltage v out (v) 0.00 0.10 0.15 0.05 v in =4.3v v in =4.5v v in =6.0v 0.0 0.5 4.5 4.0 3.5 3.0 2.5 2.0 1.0 1.5 0.30 0.20 0.25 v in =5.0v output current i out (a)
r5322n 9 2) output voltage vs. input voltage 1.5v (vr1) 1.5v (vr2) input voltage v in (v) output voltage v out (v) 134 2 1.0 1.1 1.6 1.5 1.4 1.3 1.2 6 5 i out =1ma i out =30ma i out =50ma output voltage v out (v) 134 2 1.0 1.1 1.6 1.5 1.4 1.3 1.2 6 5 i out =1ma i out =30ma i out =50ma input voltage v in (v) 2.8v (vr1) 2.8v (vr2) output voltage v out (v) 134 2 2.0 2.1 2.2 2.9 2.8 2.7 2.6 2.4 2.5 2.3 6 5 i out =1ma i out =30ma i out =50ma input voltage v in (v) output voltage v out (v) 134 2 2.0 2.1 2.2 2.9 2.8 2.7 2.6 2.4 2.5 2.3 6 5 i out =1ma i out =30ma i out =50ma input voltage v in (v) 4.0v (vr1) 4.0v (vr2) output voltage v out (v) 134 2 3.0 3.2 4.2 4.0 3.8 3.6 3.4 6 5 i out =1ma i out =30ma i out =50ma input voltage v in (v) output voltage v out (v) 134 2 3.0 3.2 4.2 4.0 3.8 3.6 3.4 6 5 i out =1ma i out =30ma i out =50ma input voltage v in (v)
r5322n 10 3) dropout voltage vs. temperature 1.5v (vr1) 1.5v (vr2) output current i out (ma) dropout voltage v dif (v) 04060 20 0.00 0.20 1.00 0.80 0.60 0.40 120 100 80 topt=85 c 25 c -40 c output current i out (ma) dropout voltage v dif (v) 04060 20 0.00 0.20 1.00 0.80 0.60 0.40 120 100 80 topt=85 c 25 c -40 c 2.8v (vr1) 2.8v (vr2) output current i out (ma) dropout voltage v dif (v) 04060 20 0.00 0.05 0.10 0.40 0.35 0.30 0.25 0.15 0.20 120 100 80 topt=85 c 25 c -40 c output current i out (ma) dropout voltage v dif (v) 04060 20 0.00 0.05 0.10 0.40 0.35 0.30 0.25 0.15 0.20 100 120 80 topt=85 c 25 c -40 c 4.0v (vr1) 4.0v (vr2) output current i out (ma) dropout voltage v dif (v) 04060 20 0.00 0.05 0.10 0.40 0.35 0.30 0.25 0.15 0.20 120 100 80 topt=85 c 25 c -40 c output current i out (ma) dropout voltage v dif (v) 04060 20 0.00 0.05 0.10 0.40 0.35 0.30 0.25 0.15 0.20 120 100 80 topt=85 c 25 c -40 c
r5322n 11 4) output voltage vs. temperature 1.5v (vr1) 1.5v (vr2) temperature topt( c) output voltage v out (v) -50 0 25 -25 1.46 1.47 1.48 1.54 1.53 1.52 1.51 1.49 1.50 100 v in =2.5v i out =30ma 75 50 temperature topt( c) output voltage v out (v) -50 0 25 -25 1.46 1.47 1.48 1.54 1.53 1.52 1.51 1.49 1.50 100 v in =2.5v i out =30ma 75 50 2.8v (vr1) 2.8v (vr2) temperature topt( c) output voltage v out (v) -50 0 25 -25 2.74 2.76 2.78 2.86 2.84 2.82 2.80 100 v in =3.8v i out =30ma 75 50 temperature topt( c) output voltage v out (v) -50 0 25 -25 2.74 2.76 2.78 2.86 2.84 2.82 2.80 100 v in =3.8v i out =30ma 75 50 4.0v (vr1) 4.0v (vr2) temperature topt( c) output voltage v out (v) -50 0 25 -25 3.92 3.94 3.96 3.98 4.08 4.06 4.04 4.02 4.00 100 v in =5.0v i out =30ma 75 50 temperature topt( c) output voltage v out (v) -50 0 25 -25 3.92 3.94 3.96 3.98 4.08 4.06 4.04 4.02 4.00 100 v in =5.0v i out =30ma 75 50
r5322n 12 5) supply current vs. input voltage 1.5v 2.8v input voltage v in (v) supply current i ss ( a) 023 1 0 20 40 100 80 60 6 5 vr1 vr2 4 input voltage v in (v) supply current i ss ( a) 023 1 0 20 40 100 80 60 6 5 vr1 vr2 4 4.0v input voltage v in (v) supply current i ss ( a) 023 1 0 20 40 100 80 60 6 5 vr1 vr2 4 6) supply current vs. temperature 1.5v (vr1) 1.5v (vr2) temperature topt( c) supply current i ss ( a) -50 0 0 20 40 100 80 60 100 v in =2.5v 50 temperature topt( c) supply current i ss ( a) -50 0 0 20 40 100 80 60 100 v in =2.5v 50
r5322n 13 2.8v (vr1) 2.8v (vr2) temperature topt( c) supply current i ss ( a) -50 0 25 -25 0 20 100 v in =3.8v 80 60 40 100 75 50 temperature topt( c) supply current i ss ( a) -50 0 25 -25 0 20 100 v in =3.8v 80 60 40 100 75 50 4v (vr1) 4v (vr2) temperature topt( c) supply current i ss ( a) -50 0 25 -25 0 20 100 v in =5.0v 80 60 40 100 75 50 temperature topt( c) supply current i ss ( a) -50 0 25 -25 0 20 100 v in =5.0v 80 60 40 100 75 50 7) dropout voltage vs. set output voltage vr1 vr2 output voltage v out (v) dropout voltage v dif (v) 1.0 2.0 0.00 0.10 0.20 0.70 0.60 0.50 0.40 0.30 i out =10ma 30ma 50ma 120ma 4.0 3.0 output voltage v out (v) dropout voltage v dif (v) 1.0 2.0 0.00 0.10 0.20 0.70 0.60 0.50 0.40 0.30 i out =10ma 30ma 50ma 120ma 4.0 3.0
r5322n 14 8) ripple rejection vs. frequency 1.5v (vr1) 1.5v (vr2) frequency f(khz) ripple rejection rr(db) 0.1 1 0 10 20 90 v in =2.5v+0.5vp-p c out =tantal 1.0 f topt=25 c 70 80 60 50 40 30 i out =1ma i out =30ma i out =50ma 100 10 frequency f(khz) ripple rejection rr(db) 0.1 1 0 10 20 90 70 80 60 50 40 30 i out =1ma i out =30ma i out =50ma 100 10 v in =2.5v+0.5vp-p c out =tantal 1.0 f topt=25 c 1.5v (vr1) 1.5v (vr2) frequency f(khz) ripple rejection rr(db) 0.1 1 0 10 20 90 70 80 60 50 40 30 i out =1ma i out =30ma i out =50ma 100 10 v in =2.5v+0.5vp-p c out =tantal 2.2 f topt=25 c frequency f(khz) ripple rejection rr(db) 0.1 1 0 10 20 90 70 80 60 50 40 30 i out =1ma i out =30ma i out =50ma 100 10 v in =2.5v+0.5vp-p c out =tantal 2.2 f topt=25 c 2.8v (vr1) 2.8v (vr2) frequency f(khz) ripple rejection rr(db) 0.1 1 0 10 20 90 70 80 60 50 40 30 i out =1ma i out =30ma i out =50ma 100 10 v in =3.8v+0.5vp-p c out =tantal 1.0 f topt=25 c frequency f(khz) ripple rejection rr(db) 0.1 1 0 10 20 30 90 70 80 50 60 40 100 i out =1ma i out =30ma i out =50ma 10 v in =3.8v+0.5vp-p c out =tantal 1.0 f topt=25 c
r5322n 15 2.8v (vr1) 2.8v (vr2) ripple rejection rr(db) 0.1 1 0 10 20 90 v in =3.8v+0.5vp-p c out =tantal 2.2 f topt=25 c 70 80 60 50 40 30 i out =1ma i out =30ma i out =50ma 100 10 frequency f(khz) frequency f(khz) ripple rejection rr(db) 0.1 1 0 10 20 90 v in =3.8v+0.5vp-p c out =tantal 2.2 f topt=25 c 70 80 60 50 40 30 i out =1ma i out =30ma i out =50ma 100 10 4.0v (vr1) 4.0v (vr2) frequency f(khz) ripple rejection rr(db) 0.1 1 0 10 20 90 v in =5.0v+0.5vp-p c out =tantal 1.0 f topt=25 c 70 80 60 50 40 30 i out =1ma i out =30ma i out =50ma 100 10 frequency f(khz) ripple rejection rr(db) 0.1 1 0 10 20 90 v in =5.0v+0.5vp-p c out =tantal 1.0 f topt=25 c 70 80 60 50 40 30 i out =1ma i out =30ma i out =50ma 100 10 4.0v (vr1) 4.0v (vr2) frequency f(khz) ripple rejection rr(db) 0.1 1 0 10 20 90 v in =5.0v+0.5vp-p c out =tantal 2.2 f topt=25 c 70 80 60 50 40 30 i out =1ma i out =30ma i out =50ma 100 10 frequency f(khz) ripple rejection rr(db) 0.1 1 0 10 20 90 v in =5.0v+0.5vp-p c out =tantal 2.2 f topt=25 c 70 80 60 50 40 30 i out =1ma i out =30ma i out =50ma 100 10
r5322n 16 9) ripple rejection vs. input voltage (dc bias) 2.8v (vr1) 2.8v (vr2) input voltage v in (v) ripple rejection rr(db) 2.9 3.0 0 20 100 c out =tantal 2.2 f i out =1ma 80 60 40 f=1khz f=10khz f=100khz 3.3 3.1 3.2 input voltage v in (v) ripple rejection rr(db) 2.9 3.0 0 20 100 c out =tantal 2.2 f i out =1ma 80 60 40 f=1khz f=10khz f=100khz 3.3 3.1 3.2 2.8v (vr1) 2.8v (vr2) input voltage v in (v) ripple rejection rr(db) 2.9 3.0 0 20 100 c out =tantal 2.2 f i out =30ma 80 60 40 f=1khz f=10khz f=100khz 3.3 3.1 3.2 input voltage v in (v) ripple rejection rr(db) 2.9 3.0 0 20 100 c out =tantal 2.2 f i out =30ma 80 60 40 f=1khz f=10khz f=100khz 3.3 3.1 3.2 2.8v (vr1) 2.8v (vr2) input voltage v in (v) ripple rejection rr(db) 2.9 3.0 0 20 100 c out =tantal 2.2 f i out =50ma 80 60 40 f=1khz f=10khz f=100khz 3.3 3.1 3.2 input voltage v in (v) ripple rejection rr(db) 2.9 3.0 0 20 100 c out =tantal 2.2 f i out =50ma 80 60 40 f=1khz f=10khz f=100khz 3.3 3.1 3.2
r5322n 17 10) input transient response r5322n001 (2.8v, vr1) time t( s) output voltage v out (v) input voltage v in (v) 010 2.78 2.79 2.84 i out =30ma c out =tantal 1.0 f tr/tf=5 s topt=25 c 2.83 2.82 2.81 2.80 0.0 1.0 6.0 5.0 4.0 3.0 2.0 100 90 80 70 20 30 40 50 60 v in v out r5322n001 (2.8v, vr1) time t( s) output voltage v out (v) input voltage v in (v) 010 2.78 2.79 2.84 i out =30ma c out =tantal 2.2 f tr/tf=5 s topt=25 c 2.83 2.82 2.81 2.80 0.0 1.0 6.0 5.0 4.0 3.0 2.0 100 90 80 70 20 30 40 50 60 v in v out r5322n001 (2.8v, vr1) time t( s) output voltage v out (v) input voltage v in (v) 010 2.78 2.79 2.84 i out =30ma c out =tantal 6.8 f tr/tf=5 s topt=25 c 2.83 2.82 2.81 2.80 0.0 1.0 6.0 5.0 4.0 3.0 2.0 100 90 80 70 20 30 40 50 60 v in v out
r5322n 18 r5322n001 (2.8v, vr2) time t( s) output voltage v out (v) input voltage v in (v) 010 2.78 2.79 2.84 i out =30ma c out =tantal 1.0 f tr/tf=5 s topt=25 c 2.83 2.82 2.81 2.80 0.0 1.0 6.0 5.0 4.0 3.0 2.0 100 90 80 70 20 30 40 50 60 v in v out r5322n001 (2.8v, vr2) time t( s) output voltage v out (v) input voltage v in (v) 010 2.78 2.79 2.84 i out =30ma c out =tantal 2.2 f tr/tf=5 s topt=25 c 2.83 2.82 2.81 2.80 0.0 1.0 6.0 5.0 4.0 3.0 2.0 100 90 80 70 20 30 40 50 60 v in v out r5322n001 (2.8v, vr2) time t( s) output voltage v out (v) input voltage v in (v) 010 2.78 2.79 2.84 i out =30ma c out =tantal 6.8 f tr/tf=5 s topt=25 c 2.83 2.82 2.81 2.80 0.0 1.0 6.0 5.0 4.0 3.0 2.0 100 90 80 70 20 30 40 50 60 v in v out
r5322n 19 11) load transient response r5322n001 (vr1=2.8v) time t( s) output voltage v out (v) output current i out1 (ma) -2 0 2.75 3.00 2.90 2.95 2.85 2.80 2.70 2.75 2.80 150 100 50 0 18 i out =50ma 100ma v in =3.8v c in =tantal 1.0 f c out =tantal 1.0 f tr/tf=5 s topt=25 c 16 14 12 246810 v out2 v out1 i out1 i out2 =30ma r5322n001 (vr1=2.8v) time t( s) output voltage v out (v) output current i out1 (ma) -2 0 2.75 3.00 2.90 2.95 2.85 2.80 2.70 2.75 2.80 150 100 50 0 18 16 14 12 246810 v out2 v out1 i out1 i out2 =30ma i out =50ma 100ma v in =3.8v c in =tantal 1.0 f c out =tantal 2.2 f tr/tf=5 s topt=25 c r5322n001 (vr1=2.8v) time t( s) output voltage v out (v) output current i out1 (ma) -2 0 2.75 3.00 2.90 2.95 2.85 2.80 2.70 2.75 2.80 150 100 50 0 18 16 14 12 246810 v out2 v out1 i out1 i out2 =30ma i out =50ma 100ma v in =3.8v c in =tantal 1.0 f c out =tantal 6.8 f tr/tf=5 s topt=25 c
r5322n 20 r5322n001 (vr2=2.8v) time t( s) output voltage v out (v) output current i out2 (ma) -2 0 2.75 3.00 2.90 2.95 2.85 2.80 2.70 2.75 2.80 150 100 50 0 18 16 14 12 246810 v out2 v out1 i out2 i out1 =30ma i out =50ma 100ma v in =3.8v c in =tantal 1.0 f c out =tantal 1.0 f tr/tf=5 s topt=25 c r5322n00 (vr2=2.8v) time t( s) output voltage v out (v) output current i out2 (ma) -2 0 2.75 3.00 2.90 2.95 2.85 2.80 2.70 2.75 2.80 150 100 50 0 18 16 14 12 246810 v out2 v out1 i out2 i out1 =30ma i out =50ma 100ma v in =3.8v c in =tantal 1.0 f c out =tantal 2.2 f tr/tf=5 s topt=25 c r5322n00 (vr2=2.8v) time t( s) output voltage v out (v) output current i out2 (ma) -2 0 2.75 3.00 2.90 2.95 2.85 2.80 2.70 2.75 2.80 150 100 50 0 18 16 14 12 246810 v out2 v out1 i out2 i out1 =30ma i out =50ma 100ma v in =3.8v c in =tantal 1.0 f c out =tantal 6.8 f tr/tf=5 s topt=25 c
r5322n 21 technical notes when using these ics, consider the following points: in these ics, phase compensation is made for securing stable operation even if the load current is varied. for this purpose, be sure to use a 2.2f or more capacitance c out with good frequency characteristics and esr (equivalent se- ries resistance) of which is in the range described as follows: the relations between i out (output current) and esr of output capacitor are shown below. the conditions when the white noise level is under 40v (avg.) are marked as the hatched area in the graph. (note: when a ceramic capacitor is connected to the output pin as output capacitor for phase compensation, the op- eration might be unstable unless as much as 1 ? resistor is connected between the capacitor and gnd instead of esr. test these ics with as same external components as ones to be used on the pcb.) (1) v in =3.8v (2) frequency band: 10hz to 2mhz (3) temperature: 25 c r5322n001 (vr1=2.8v) r5322n001 (vr1=2.8v) output current i out1 (ma) ers1( ? ) 04060 20 0.01 0.1 100 c in =ceramic 1.0 f c out =ceramic 2.2 f 10 1 120 100 80 output current i out1 (ma) ers1( ? ) 04060 20 0.01 0.1 100 c in =ceramic 2.2 f c out =ceramic 2.2 f 10 1 120 100 80
r5322n 22 r5322n001 (vr2=2.8v) r5322n001 (vr2=2.8v) output current i out2 (ma) ers2( ? ) 04060 20 0.01 0.1 100 c in =ceramic 1.0 f c out =ceramic 2.2 f 10 1 120 100 80 output current i out2 (ma) ers2( ? ) 04060 20 0.01 0.1 100 c in =ceramic 2.2 f c out =ceramic 2.2 f 10 1 120 100 80 ? make v dd and gnd line sufficient. when the impedance of these is high, the noise might be picked up or not work correctly. ? connect the capacitor with a capacitance of 1f or more between v dd and gnd as close as possible. ? set external components, especially output capacitor, as close as possible to the ics and make wiring shortest.


▲Up To Search▲   

 
Price & Availability of R5322NSERIES

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X